Difference between revisions of "Momentum"
(→Finding Velocity from Mass and Momentum) |
(→Example Calculations) |
||
Line 62: | Line 62: | ||
====Finding Velocity from Mass and Momentum==== | ====Finding Velocity from Mass and Momentum==== | ||
{| class="wikitable" | {| class="wikitable" | ||
− | | style="height:20px; width:300px; text-align:center;" |A 700kg car has a [[momentum]] of 2.4x10<sup>4</sup>. Calculate the [[velocity]] of the car | + | | style="height:20px; width:300px; text-align:center;" |A 700kg car has a [[momentum]] of 2.4x10<sup>4</sup>kgm/s. Calculate the [[velocity]] of the car correct to two [[Significant Figures|significant figures]]. |
− | | style="height:20px; width:300px; text-align:center;" | | + | | style="height:20px; width:300px; text-align:center;" |An [[asteroid]] with a [[mass]] of 77Mg has a [[momentum]] of 3.2x10<sup>9</sup>kgm/s. Calculate the [[velocity]] of the [[asteroid]] correct to two [[Significant Figures|significant figures]]. |
|- | |- | ||
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities''' | | style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities''' | ||
+ | |||
+ | m = 700kg | ||
+ | |||
+ | p = 2.4x10<sup>4</sup>kgm/s | ||
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities''' | | style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities''' | ||
+ | |||
+ | m = 77Mg = 77x10<sup>6</sup> | ||
+ | |||
+ | p = 3.2x10<sup>9</sup>kgm/s | ||
|- | |- | ||
| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' | | style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' | ||
+ | |||
+ | <math>p = mv</math> | ||
+ | |||
+ | <math>2.4 \times 10^4 = 700v</math> | ||
| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' | | style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' | ||
+ | |||
+ | <math>p = mv</math> | ||
+ | |||
+ | <math>3.2 \times 10^9 = (77 \times 10^6 )v</math> | ||
|- | |- | ||
| style="height:20px; width:300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' | | style="height:20px; width:300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' | ||
+ | |||
+ | <math>v = \frac{2.4 \times 10^4}{700}</math> | ||
+ | |||
+ | <math>v = 34.285714m/s</math> | ||
+ | |||
+ | <math>v \approx 34m/s</math> | ||
| style="height:20px; width:300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' | | style="height:20px; width:300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' | ||
+ | |||
+ | <math>v = \frac{3.2 \times 10^9}{77 \times 10^6}</math> | ||
+ | |||
+ | <math>v = 41.558441m/s</math> | ||
+ | |||
+ | <math>v \approx 42m/s</math> | ||
|} | |} | ||
====Finding Mass from Velocity and Momentum==== | ====Finding Mass from Velocity and Momentum==== | ||
{| class="wikitable" | {| class="wikitable" | ||
− | | style="height:20px; width:300px; text-align:center;" | | + | | style="height:20px; width:300px; text-align:center;" |A skydiver has a [[velocity]] of 53m/s and a [[momentum]] of 4400kgm/s. Calculate the [[mass]] of the skydiver correct to two [[Significant Figures|significant figures]]. |
− | | style="height:20px; width:300px; text-align:center;" | | + | | style="height:20px; width:300px; text-align:center;" |A plane travelling with a [[velocity]] of 122m/s has a [[momentum]] of 9.2x10<sup>4</sup>kgm/s. Calculate the [[mass]] of the [plane]] correct to two [[Significant Figures|significant figures]]. |
|- | |- | ||
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities''' | | style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities''' | ||
+ | |||
+ | v = 53m/s | ||
+ | |||
+ | p = 4400kgm/s | ||
| style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities''' | | style="height:20px; width:300px; text-align:left;" |'''1. State the known quantities''' | ||
+ | |||
+ | v = 122m/s | ||
+ | |||
+ | p = 9.2x10<sup>4</sup>kgm/s | ||
|- | |- | ||
| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' | | style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' | ||
+ | |||
+ | <math>p = mv</math> | ||
+ | |||
+ | <math>4400 = 53m</math> | ||
| style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' | | style="height:20px; width:300px; text-align:left;" |'''2. [[Substitute (Maths)|Substitute]] the numbers and [[Evaluate (Maths)|evaluate]].''' | ||
+ | |||
+ | <math>p = mv</math> | ||
+ | |||
+ | <math>9.2 \times 10^4 = 122m</math> | ||
|- | |- | ||
| style="height:20px; width:300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' | | style="height:20px; width:300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' | ||
+ | |||
+ | <math>m = \frac{4400}{53}</math> | ||
+ | |||
+ | <math>m = 83.01887kg</math> | ||
+ | |||
+ | <math>m \approx 83kg</math> | ||
| style="height:20px; width:300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' | | style="height:20px; width:300px; text-align:left;" |'''3. [[Rearrange (Maths)|Rearrange]] the equation and [[Solve (Maths)|solve]].''' | ||
+ | |||
+ | <math>m = \frac{9.2 \times 10^4}{122}</math> | ||
+ | |||
+ | <math>m = 754.0984kg</math> | ||
+ | |||
+ | <math>m \approx 750kg</math> | ||
|} | |} |
Revision as of 09:16, 15 February 2019
Contents
Key Stage 4 Higher
Meaning
Momentum is a vector quantity and the product of mass and velocity of an object.
About Momentum
- Momentum is a vector so it has magnitude and direction.
- The SI Units of momentum are kilogram metres per second (kgm/s).
- Momentum is conserved which means the total momentum before an interaction is the same as the total momentum after the interaction, see Conservation of Momentum.
- Forces cause a change in momentum. The quicker the change in momentum the greater the force applied to an object.
Equation
Momentum = Mass x Velocity
\(p = mv\)
Where
\(p\) = Momentum of the object.
\(m\) = Inertial Mass of the object.
\(v\) = Velocity of the object.
Example Calculations
Finding Momentum from Mass and Velocity
A 21g bullet travels at a velocity of 600m/s. Calculate the momentum of the bullet correct to two significant figures. | A 7.6 tonne lorry travels at a velocity of 30m/s. Calculate the momentum of the bullet correct to two significant figures. |
1. State the known quantities
m = 21g = 0.021kg v = 610m/s |
1. State the known quantities
m = 7.6 tonnes = 7600kg v = 32m/s |
2. Substitute the numbers into the equation and solve.
\(p = mv\) \(p = 0.021 \times 610\) \(p = 12.81kgm/s\) \(p \approx 13kgm/s\) |
2. Substitute the numbers into the equation and solve.
\(p = mv\) \(p = 7600 \times 32\) \(p = 243200kgm/s\) \(p \approx 240000kgm/s\) |
Finding Velocity from Mass and Momentum
A 700kg car has a momentum of 2.4x104kgm/s. Calculate the velocity of the car correct to two significant figures. | An asteroid with a mass of 77Mg has a momentum of 3.2x109kgm/s. Calculate the velocity of the asteroid correct to two significant figures. |
1. State the known quantities
m = 700kg p = 2.4x104kgm/s |
1. State the known quantities
m = 77Mg = 77x106 p = 3.2x109kgm/s |
2. Substitute the numbers and evaluate.
\(p = mv\) \(2.4 \times 10^4 = 700v\) |
2. Substitute the numbers and evaluate.
\(p = mv\) \(3.2 \times 10^9 = (77 \times 10^6 )v\) |
3. Rearrange the equation and solve.
\(v = \frac{2.4 \times 10^4}{700}\) \(v = 34.285714m/s\) \(v \approx 34m/s\) |
3. Rearrange the equation and solve.
\(v = \frac{3.2 \times 10^9}{77 \times 10^6}\) \(v = 41.558441m/s\) \(v \approx 42m/s\) |
Finding Mass from Velocity and Momentum
A skydiver has a velocity of 53m/s and a momentum of 4400kgm/s. Calculate the mass of the skydiver correct to two significant figures. | A plane travelling with a velocity of 122m/s has a momentum of 9.2x104kgm/s. Calculate the mass of the [plane]] correct to two significant figures. |
1. State the known quantities
v = 53m/s p = 4400kgm/s |
1. State the known quantities
v = 122m/s p = 9.2x104kgm/s |
2. Substitute the numbers and evaluate.
\(p = mv\) \(4400 = 53m\) |
2. Substitute the numbers and evaluate.
\(p = mv\) \(9.2 \times 10^4 = 122m\) |
3. Rearrange the equation and solve.
\(m = \frac{4400}{53}\) \(m = 83.01887kg\) \(m \approx 83kg\) |
3. Rearrange the equation and solve.
\(m = \frac{9.2 \times 10^4}{122}\) \(m = 754.0984kg\) \(m \approx 750kg\) |