Difference between revisions of "Relative Permittivity"
(→Equation) |
|||
| (One intermediate revision by the same user not shown) | |||
| Line 8: | Line 8: | ||
===Equation=== | ===Equation=== | ||
| − | + | : When an [[Electrostatic Field|electrostatic field]] propagates through a [[medium]] which is not the [[vacuum]] the [[permittivity]] of that [[medium]] is given by the product of its '''relative permittivity''' and the [[Permittivity of Free Space|permittivity of free space]]. | |
| + | |||
| + | <math>\varepsilon=\varepsilon_r\varepsilon_0</math> | ||
| + | |||
| + | Therefore | ||
| + | |||
| + | <math>\varepsilon_r=\dfrac{\varepsilon}{\varepsilon_0}</math> | ||
| + | |||
| + | ===Example Media=== | ||
| + | {| class="wikitable" | ||
| + | |||
| + | |- | ||
| + | | style="height:20px; width:200px; text-align:center;" |[[Medium]] | ||
| + | | style="height:20px; width:200px; text-align:center;" |'''Relative Permittivity''' | ||
| + | |- | ||
| + | | style="height:20px; width:200px; text-align:center;" |Air | ||
| + | | style="height:20px; width:200px; text-align:center;" |1.00054 | ||
| + | |- | ||
| + | | style="height:20px; width:200px; text-align:center;" |Glass | ||
| + | | style="height:20px; width:200px; text-align:center;" |4.7 | ||
| + | |- | ||
| + | | style="height:20px; width:200px; text-align:center;" |Water (at 0°C) | ||
| + | | style="height:20px; width:200px; text-align:center;" |88 | ||
| + | |- | ||
| + | | style="height:20px; width:200px; text-align:center;" |Steam (at 100°C) | ||
| + | | style="height:20px; width:200px; text-align:center;" |55 | ||
| + | |} | ||
Latest revision as of 15:14, 7 September 2019
Key Stage 5
Meaning
Relative Permittivity is the ratio of the Permittivity of a medium compared to the Permittivity of Free Space.
About Relative Permittivity
- Relative permittivity of a medium is denoted with the Greek letter epsilon followed by a subscript of r (\(\varepsilon_r\)).
- Relative permittivity has no units.
Equation
- When an electrostatic field propagates through a medium which is not the vacuum the permittivity of that medium is given by the product of its relative permittivity and the permittivity of free space.
\(\varepsilon=\varepsilon_r\varepsilon_0\)
Therefore
\(\varepsilon_r=\dfrac{\varepsilon}{\varepsilon_0}\)
Example Media
| Medium | Relative Permittivity |
| Air | 1.00054 |
| Glass | 4.7 |
| Water (at 0°C) | 88 |
| Steam (at 100°C) | 55 |